Training D-Link

Configurare Lo stacking fisico (Switch Smart e Managed)

Ampliamento fisico

Man mano che la nostra rete cresce, è più che probabile che la domanda di **densità delle porte** aumenterà e, con essa, la necessità di acquisire nuove apparecchiature hardware.

Gli **switch** che aggiungiamo, se appartengono alla stessa famiglia di quelli esistenti e vogliamo che eseguano azioni identiche, possiamo montarli formando una pila tra loro in modo che funzionino come un'unica unità logica.

I vantaggi sono molti, tra gli altri:

- **Gestione:** un unico IP (quello dello switch *master*) serve a controllare la configurazione dell'intero stack
- Ridondanza: lo stack continua a funzionare anche in caso di guasto di un'unità o di un collegamento
- Prezzo: più economico e flessibile di un sistema a chassis (simile per capacità e affidabilità)

Il traffico interno dello **stack** è separato dal traffico della rete con evidenti benefici sulla rete.

Inoltre, le **tabelle dei Mac address di inoltro (**(**Forwarding Database Tables**) SONO distribuite tra tutti gli switch dello **stack.** In questo modo, ognuno di essi può gestire il traffico locale (cioè, non è necessario che i frame vengano inviati allo switch che è rimasto come *master*).

	ID-ILAINIE	
		C
D-Link		
DES-1510-28		
D-Link		
005-1510-29		
003-7310-20		
D-Link		
005-1510-28		
DUS-1510-20		
D-Link		
D6S-1510-28		

Collegamento tramite cavi (DAC)

Oltre a una piccola configurazione, è necessario collegare fisicamente gli switch in stack tra loro. Per fare ciò, possiamo usare gli ultimi slot SFP+ / QSFP+ dello switch. Una volta attivata la funzione di stacking queste porte saranno destinate esclusivamente a questo scopo (a seconda della configurazione e del modello, le porte dedicate possono essere da 2 a 4).

Per interconnettere gli Switch possiamo optare per due soluzioni:

- Transceiver + Fibra ottica
- Cavo DAC

Le due modalità ci daranno il medesimo risultato atteso: connessioni **ad alta velocità** per collegare gli switch tra loro. Il più diffuso oggi, quando si tratta di fare lo stacking all'interno dello stesso rack, si basa su cavi twinax (**Direct Attach Cable -DAC**) per il loro minor costo e facilità di installazione.

<u>NOTA:</u> Nelle serie **DGS-1520**, **DGS-3130** è possibile utilizzare anche cavi rame UTP Cat6 tramite porte **10GBase-T** per fare lo stacking

Famiglie compatibili

Lo stacking fisico può essere implementato su tutta la nostra gamma di switch **gestiti D-Link** e nella famiglia Smart-Managed **DGS-1510** e **DGS-1520**.

È logico che sia implementato in switch di fascia media e alta poiché questa tecnologia è orientata come soluzione in reti di grandi dimensioni e con esigenze di ridondanza.

Vediamo ora una tabella riassuntiva relativa allo stacking nei vari switch D-Link:

Switch	Unità massime	Connessioni	Banda massima
DGS-1510	6	2 SFP+	40 Gbps
DGS-1520	8	2 SFP+ 2 10GBase-T	80 Gbps
DGS-3130	9 (*)	2 / 4 SFP+ 2 10GBase-T	80 Gbps
DGS-3630	9	2 / 4 SFP+	80 Gbps
DXS-3400	4	2 / 4 SFP+	80 Gbps
DXS-3610	12	6 QSFP+ 6 QSP28	1200 Gbps

(*) In questa famiglia, è necessario ricordare che lo **stack** non deve superare un **costo** totale di 12.

Questo valore viene calcolato sommando i costi unitari (per i modelli a **54 porte** ha un valore di **2** e per quelli con **30** porte è pari a **1**).

Quindi, ad esempio, potremmo avere questa combinazione:

2 x DGS-3130-30TS, 2 x DGS-3130-30S y 4 x DGS-3130-54TS (2 x 1 + 2 x 1 + 4 x 2 = 12)

Come viene implementato da WEB UI?

È utile ricordare che la **configurazione** deve essere eseguita prima di interconnettere fisicamente gli switch.

Fase 1

Dobbiamo attivare l'opzione **di stacking** che, per impostazione predefinita, è disabilitata. Per fare ciò, andremo al menu: Gestione >> Physical Stacking

Physical Stacking			
Physical Stacking			
Stacking Mode	Enabled	O Disabled	Apply

Fase 2

All'interno di questo menu, possiamo modificare i **parametri ID** (per assegnare un numero di identificazione allo switch) e **priorità** (valore che verrà confrontato per valutare quale apparecchiatura sarà il master dello stack).

La scelta del **master primario** cadrà a favore dello switch con la **priorità** migliore che è equivalente a quello con il valore numerico più basso (per impostazione predefinita, questo valore è 32 e può essere modificato in un valore compreso tra 1 e 63).

In caso di parità, la priorità più alta sarà determinata dal mac address con il valore più basso.

NOTA: Esiste un'eccezione a questa regola, che è contemplata nel DGS-3130, dove la maggiore priorità è collegata al valore numerico più alto (anche l'intervallo dei valori ammissibili differisce: tra 0 e 15).

Stack ID								
Current Uni	t ID 1	~	New	Box ID	Auto 🗸	Priority (1-63)	32	Apply
Topology:		Duplex_Chain			My Box ID:	1		
Master ID:		1			BK Master ID:			
Box Count:		1						
Box ID	User Set	Module Name	Exist	Priority	MAC	PROM Version	Runtime Version	H/W Version
1	Auto	DGS-1510-20	Exist	32	0C-B6-D2-FA-3E-88	1.00.016	1.60.012	A1
2	-	NOT_EXIST	No	-		-		-
3	-	NOT_EXIST	No	-		-	-	-
4	-	NOT_EXIST	No	-			-	-
5	-	NOT_EXIST	No	-		-	-	-
6	-	NOT_EXIST	No	-			-	-

Fase 3

Dopo aver salvato la configurazione, procederemo a riavviare gli switch e in questa fase collegheremo gli switch tra loro tramite le porte e i cavi scelti.

L'apparecchiatura **master** sarà identificata tramite lettera sul suo display **H** (alternata, a intermittenza, con il suo ID numerico).

L'apparecchiatura di **backup** del master verrà identificata mostrando sul suo display la lettera **h** (alternata, a intermittenza, con il suo ID numerico).

Infine, negli altri switch, l'ID numerico verrà visualizzato sul suo display come informazione fissa per indicare la posizione relativa nello stacking.

Come viene implementato tramite CLI?

I passaggi sono simili a quelli menzionati per l'interfaccia **grafica**. Di seguito, descriviamo i comandi da eseguire:

Fase 1

L'opzione **di Switch** predefinita è disabilitata. Lo attiveremo con il comando:

Switch# stack

Fase 2

Modificheremo i valori **ID** e **PRIORITY** in base a ciò che vogliamo e a seconda del loro ruolo nello stack:

Switch# stack <OLD_ID>renumero<NEW_ID> Switch# stack <NEW_ID>priorità<PRIORITÀ>

witch#stad	ck 1 r	enumbe	er 2							
WARNING: 7	<u>The co</u>	mmand	does	not	take e	ffect u	<u>intil</u>	the	next	reboot.
	witch#s witch#s tacking tack Pr rap Stai opology ty Box I aster I aster I ox User D Set Auto - -	tack 1 pric how stack Mode eempt te D D t Module Name DGS-1510-2 NOT_EXIST NOT_EXIST NOT_EXIST NOT_EXIST	rity 10 : Enabl : Enabl : Duple : 1 : 1 : 1 : 1 : XMP Exi No No No	ed ed led x_Chain x_Chain st rity st 10	MAC F4-8C-EB-5E-	Prom Versic 1F-20 1.00.0	Runtime on Version 16 1.60.B0	H/W Versi 26 Al	on 	

Fase 3

Salveremo le modifiche e riavvieremo lo switch.

Switch#copy running-config startup-config
Destination filename startup-config? [y/n]: y
Saving all configurations to NV-RAM Done.
Switch#reboot
Are you sure you want to proceed with the system reboot?(y/n)